Photogrammetry and Mapping

Photogrammetry

Photogrammetry is generally defined as the art and science of making accurate measurements from vertical aerial photography.

Introduction

- Equipment
- Processes
- Products
- Applications
- Accuracy

Equipment

☐ HP xw8400 Softcopy Workstation

Photogrammetric mapping is achieved through five general processes:

- Ground Control Acquisition
- Imagery Acquisition
- Accurate Adjustment of the Imagery to the Earth
- Feature Collection
- Editing

- Ground Control Acquisition
 - Established by Mission Planning / Practical Considerations

Practical Considerations

Mission Planning

- Purpose of the Project (Hydrology, Pre-design, Earthwork, etc.)
- Identification of the Project Area (Mapping Limits)
- Previous Mapping of the Project Area or Surrounding Area
- Legal Permits of Project Area Needed
- Required Contour Interval
- Proposed Photo Scale / Mapping Scale
- Weather

Practical Considerations (continued)

- Availability of the Aircraft
- Current Workload / Production Schedules
- Project Manager's Deadline
- Time of Year (Photographic Considerations)
- Survey Team Schedules
- Estimated Cost to Complete Project
- Coordinate Reference Systems
 - » Horizontal Datum
 - » Vertical Datum
 - » State Plane Coordinate System

Coordinate Reference Systems

- State Plane Coordinate System (UTM Projection)
 - Three Zones in Arizona:
 - » West Zone
 - » Central Zone
 - » East Zone
- Reference Datums
 - NAD 27 (Horizontal)
 - NAD 83/92 (Horizontal)
 - NGVD29 (Vertical)
 - NAVD 88 (Vertical)
 - WGS84 (World Geodetic System)
 - HARNs (High Accuracy Reference Networks)

- Accurate Adjustment of the Imagery to the Earth
 - Aerotriangulation Process
 - » Interior Orientation
 - » Relative Orientation
 - » Absolute Orientation
 - » Evaluation/Analysis of AT Results

- Interior Orientation
 - Image Fiducial Coordinates Measured

- Relative Orientation
 - Ground Control and Pass Points Measured (Controls the Stereo Model)

- Absolute Orientation
 - Adjusts the Stereo Models (Imagery) to Fit the Ground

■ Feature or DTM Collection

VR Two Softcopy Operation

- Editing of Final Mapping and Deliverable Items
 - Adding notes to structures
 - Checking spot elevations
 - Adding title blocks/Index for the final maps
 - Cutting the final sheets
 - Preparing the final CD including:DTM files; DGN
 Files; 3D Files; Survey Data (Excel Files) Including
 Ground Control, Structures, Mileposts, Section
 Corners, Utilities; Alignment; and Orthophotos

- Orthophotography
 - Relief displacement removed
 - Single orthorectified image
 - Multiple orthorectified images (mosaics)

- Digital Mapping
 - Digital Terrain Models (3D Data)

- Digital Mapping
 - Digital Terrain Models (Triangulated Surface)

- Digital Mapping
 - Contour Generation

- Digital Mapping
 - Planimetric

- Digital Mapping
 - Topographic Mapping

Superimposed Digital Data/Mapping Over Orthophotography

Photogrammetry and Mapping Applications

- Photogrammetric products used for:
 - Public Hearings / Legal Displays / Accident Investigation
 - Environmental Studies
 - 404 Permits
 - Landscape Design
 - Airport Land-use Updates
 - Hydrology Studies / Erosion Prevention / Flood Control Studies
 - Earthwork Calculations
 - Material Pit Inventories
 - Preliminary Design Work
 - Historical Studies
 - GIS Base Maps

Accuracy Standards

Horizontal Accuracy

At least 90% of all well-defined planimetric features shall be within 0.025 inch of their true position, and 100% shall be within 0.05 inch of their true position.

Vertical Accuracy

- At least 90% of all contours shall be within ½ contour interval of true elevation, and all contours shall be within one contour interval of true elevation (with some exceptions of obscured/shadow areas).
- At least 90% of all spot elevations shall be within 0.25 contour interval of true elevation and 100% shall be within 0.50 contour interval of true elevation.

Accuracy Standards

Case Study

- Quartzsite Parker Topock Highway SR95
- Mile Post 131.7 to 142.7
- Job Number 3773
- Control Obtained by RTK GPS
- NAD83/92 Horizontal
- NAVD88 Vertical
- GAF = 1.00008
- State Plane = Western Zone

Accuracy Standards

Photogrammetric Accuracy

- National Map Accuracy Standards = 0.5 (ft) vertical for 1"=50" mapping with 1 foot contour interval.
- Photogrammetric vertical measurement maximum ground residuals for this project was 0.143 (ft).
- Photogrammetric mean standard deviation of objects was 0.091 (ft).